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SOME PROBLEMS OF LINEAR THERMOELASTICITY
IN THE GINZBURG-LANDAU THEORY OF PHASE TRANSITIONS

I. A. Kaliev and M. F. Mugafarov UDC 517.95

The well-posedness of the problem of linear thermoelasticity in the Ginzburg—Landau theory of phase
transitions is proved.
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Various mathematical models for description of phase transitions in multidimensional elastic media with the
use of the nonconvex free-energy function were considered in [1]. In [2], the problem of [1] obtained by linearizing
the equations of the Landau theory of phase transitions was studied. In the present paper, we consider the initial
boundary-value problem for the system obtained in [1] by linearizing the equations of the Ginzburg-Landau theory
of phase transitions.

Let © be a bounded domain of the n-dimensional space R", 9Q € C3, Qr = Q x (0,T) for T > 0,
St = 9Q x (0,T) be the lateral surface of the cylinder Qr, and €2 be the cross section of Q7 formed by the plane
t=rT.

Problem 1. It is required to find the displacement vector w(zx,t) = (u™)(x,t),...,u™ (x,t)) and temper-
ature 6(x,t) that satisfy in Q7 the equations

2

%Tq; — oVl + uVdivu — yVAdivu + f; (1)

00 0, ..
5= kAO—ﬁa(dlvu)—Fg, (2)

subject to the initial conditions
ul, = uo(®), (3)
ou

o, =@ @
g 00 = bo(x) (5)

and the boundary conditions

(divu)| = bi(s,t), A(divu)| = ba(s,t), 0]  =0i(s,t).
T T St
Here > 0, v > 0, k > 0, «, and [ are constants, f = f(x,t), g = g(x,t), uo(x), ui(x), 0o(x), b1(s,t), ba(s,t),
and 0, (s,t) are specified functions, = (1), ..., z(™) are the spatial variables, and ¢ is the time. Since the case

of inhomogeneous boundary conditions reduces to the case of homogeneous boundary conditions, we assume below
that by (s,t) = ba(s,t) = 01(s,t) =0.

We introduce the notation v = divu and ¢ = div f. We apply the divergence operator to the vector equation
(1) and conditions (3) and (4). As a result, we obtain the following problem:
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Problem 1.1. It is required to find the functions 0(x,t) and v(x,t) in Q7 that satisfy the equations

@ = —alAf + pAv —yA*v 4 ¢ (6)
atg - /.l/ ,Y ’
ol v
Z _kAO — B
= kA0 - 55 4 g, (™)
the initial conditions (5) and
v|  =wo(x), vy = div uo, (8)
Qo
v .
ilo, = 0@, v =divay, (9)
and the boundary conditions
=0 10
o, = (10)
A =0; 11
o, =0 (1)
0 =0. 12
. (12)

We assume that the functions 6 and v are the classical solution of Problem 1.1. We multiply (6) by the
function p € C?(Qr), which satisfies the condition

=0,
¥ Qr

and integrate the resultant equality over the cylinder Q7. Before doing this, we transform some integrals with
allowance for the initial condition (9) and conditions (13):

/vttgodxdt :/(vtcp)t dx dtf/vtgot dx dt :/vtgodxf/vtapdxf/vtgat dx dt = f/vl(x)cp(x,()) dxf/vtgot dx dt,

Qr Qr Qr Qr Qo Qr Qo Qr
2 : 0(Av)
pA“vdxdt = | div(pVAv)dxdt— | VAvVedzdt = “on dsdt— | VAuvVedxdt = — [ VAvVedz dt.
Qr Qr Qr St Qr Qr

As a result, we obtain

—/vlgadx—/vtgatda:dt: /(¢—aA9)<pdacdt+u/Avgoda:dt—l—’y/VAvVgodxdt.
T Qr

Using the resultant identity, we introduce the concept of the generalized solution of Problem 1.1.

Definition 1. We call the pair of functions {8, v}, where § € W' (Qr) and v € W' (Qr), the generalized
solution of Problem 1.1 if € satisfies Eq. (7) almost everywhere in Q7 and conditions (5) and (12) and the function v
satisfies the initial condition (8), the boundary conditions (10) and (11), and the identity

/(’yVAthp + pAv @+ vppy) de dt = — /vlcp dx — /(¢ — aAb)pdx dt (14)
Qr Qo Qr

Qo Qr Qr

for all ¢ € W4 (Qr) satisfying the conditions
= 0. (15)

Given the solution {6, v} of Problem 1.1, one can determine the generalized solution of Problem 1 as {6, u},
where u is found from the equation
0%u
o2
with the known right side, subject to the initial conditions (3) and (4).

=—aVl+ uVv—~yVAv+ f
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Theorem 1. Let 02 € C3, ¢,g € W3 (Q7), 0y € W3(Q), vo € WS (Q), v1 € WH(Q), dls, = gls, =0, and
Ooloa = volaa = Avglag = viloa = 0. Then, the generalized solution {0,v} of Problem 1.1 exists and is unique. In
this case, the following estimates are valid:

10llwz1(@ry < Clll0ollwz ) + lvollwg@) + llorllwg @) + lgllwi @) + 19lwz@n); (16)

lollwz 1 r) < Cllfollwz o) + llvollws ) + llvillwg @) + l9llwg @r) + 19wy @r) (17)

(C are constants independent of 6y, vo, v1, g, and ¢, but C may depend on T).
Proof. To prove that the generalized solution of Problem 1.1 exists, we use the principle of contracting
mappings. We construct the mapping

F: Mr — Wy'(Qr),

where My = {6 € W5 (Qr): ||0HW3 Lo <o, 0o, = 0o(x), and 6|s, = 0}, which acts in the following manner.

Given the function 0(x,t) € My, we determine the function v(x,t) € Wi’ 1(QT) that satisfies identity (14) and
conditions (8), (10), and (11). Determining the function v, we find the function 6(x,t) € W3 (Qr) that satisfies
the equation

ét:k'Aé—ﬁUt-i-g
and the conditions | = () and ] = 0.
Q() ST

Let = F (0). We show that, for reasonably small T, the mapping F' is contracting and maps My into itself.
Lemma 1. Let 6(x,t) € Myp. Hence, the function v determined for a given function 6 in constructing F
satisfies the estimates

1ol any + ety < elvolluscay + o1y o) + TR 51 0 + 191303 (18)

10125 0y < Tl + I01acy) + T2 3 0 + 1615 @) (19)

where ¢ are constants independent of T, 6y, vg, vy, and ¢.
Proof. Let uy(x), uz(x),... be a system orthonormalized in Lo (£2) that contains all generalized eigenfunc-
tions of the problem

Auk:/\kuk, JIEQ, Uk|aQ:O (k‘=1,2,...).

The system wuj(x),us(x),. .. is the orthonormalized basis in Lo(2), Ay < 0 and A\ — —o0 as k — oo [3,
p. 191]. The function ®(x,t) = ¢ — aAf belongs to W4 (Q7). It follows from the Fubini theorem that ®(x,t) €
Ly () for t € (0,T). Forallt € (0,T), the functions vg(x), v1(z), and ®(z,t) can be expanded in the Fourier series
in terms of the functions u;(x), us(x),. .. :

= Zv()kuk(w), vy (x) = Zvlkuk(w), O(x,t) = Z D (t)ug (). (20)
k=1 k=1 k=1

Here vor = (vo, Uk) L, (), Vik = (V1,Uk) L, (), and Py (t) = /@(m,t)uk(m) dz.
Q

Since |®x(t)]* < /@2(58725) dx/ui(x) dx = /@2(1:,15) dx, then ®y(t) € L2(0,T). According to the

Q Q Q
Parseval-Steklov equality, we obtain

in = [lvoll? in = Jlvil? (21)
0k 01l Lo () 1k 1L, ()
k=1 k=1

and, for ¢t € (0,7T),

f: P (t) = /@2(% t) d.

k=1 5
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Hence, we have
D dR(t) = /qﬂm) dz.
k=1 Q

For the specified function § € My, the solution v of problem (14), (8), (10), (11) can be written in the form
of the series

t) = Z Uk (t)ur(x), (23)
k=1
where
v .
Ug(t) = vor cos (\/ VA2 — pi t) + % sin (\/yA? — pAi t)
VAL — HAE
. t
i —————— /(I)k(T) sin (y/YA? — pAg (t — 7)) dT. (24)
VN — Bk J »

Indeed, the function Uy (t) belongs to W (0, T), satisfies the initial conditions Uy (0) = vo and U}/(0) = vy at t = 0,
and is a solution of the equation

U];/ + (’)//\i - [L)\k)Uk = ék-

Since the function Vi (x,t) = Ui (t)ug(z) and any function ¢ € Wi (Qr) that obeys conditions (15) satisfy
the relations

/VAVkV<pdxdt )\k/VVngodxdt -7 /ngodxdt u/Achpdxdt:,u)\k/ngodxdt,
Qr Qr Qr

T

/thgot do dt = /uk(w)(/TU,;(t)got dt) do = /uk(w)(—ulw(m,O) —/U,';(t)gadt) dz
0

Qr Q Q 0

= —v1j /uk(m)go(w,O) dx — / ug () O dr dt + (YA — pdy) / Vi dz dt,
Q Qr Qr
the function Vi (x,t) satisfies the integral identity

/('VVAVI@VSD + uAVip + Vigpr) do dt = —vi /uk(w)%@ dr — / P (t)ur(x)p da dt.
Qr Qo QT
Formula (24) implies that, for all ¢ € [0, T, we have

T
[Uk(8)] < vor| + k] I7AR — sl ™2 + 727 —uAkl—”Q/l@k(t)ldt,

T
UR() < 3( + oduhf — il "+ Thod -l ! [ @ (o)),
0

dU,
k’ < [vor| 7ML — uAk|1/2+\v1k|+/|<I>k (t)] dt,

T

(Uokh/\k k| + Vi), + T/‘I’i(t) dt
0

‘ dUk
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Since, by the conditions of Theorem 1, the function vy € W3 (), Uo‘ag =0, AUO‘BQ = 0, its Fourier series (20)

in the functions {u} converges to it in the norm of the space W3 (€2) [3, p. 253]. Similarly, the corresponding Fourier
series for the functions v; and @ converge to them in the norm of the space W4 (). In this case, the following
estimates are valid:

OO

o0
SN <cllooldpe:  Soviinl <cluilBia, D Il / St < |2 0ny  (25)
= k=1 k=1

We consider the partial sum of series (23)

N
:ZUk t)ur(x
k=1

For any t € [0,7], the function vy (x,t) and its derivative with respect to t belong to W3 (), and the following
estimates hold:

N 2 N 9 n N
||vN||€V23(Qt)H;Uk(t)uk(m)uwg(ﬂt) /[(ZUk(t)uk(m)) + (X Uity (@)

o k=1 i=1 k=1
2
szMm><22mmW»w
1,j=1k=1 i,5,l=1 k=1
- 2 n N O(Vug(x)) |2
c/( Z umﬂjxl(m)) dxgc/ Z ZU@(t)’%’ dx
I=1k=1 o Hi=1lk=1 Lt
N N
/Z UR ()| AVug? de < ¢ U, Ai/wuk\?da: (26)
k=1 k=1 3
N N \2
=c U2 < e 2 el + 02 k + T /<I)th
2 Uk kz_:1< e B Wy AT m-w

N T
< e (uBulMel® + oBulnel + Tl /@2 dt).
k=1

51 0y = | S tmel] = S
La(Q0) ety L0 &
N s N s
< CZ (v%kh)\i — | + 03, +T/<I>2 dt CZ (vok YA + | Ar]) + 03, +T/<I>§ dt).
k=1 0 k=1 0

Passing to the limit in (26) as N — oo and bearing in mind (21), (22), and (25), we obtain estimate (18) in
Lemma 1. Estimate (19) follows from (18) after integration with respect to time from 0 to T'.
Lemma 2. Let 0(x,t) € Mr. Then, the following estimate is valid for the function 8 = F(0):

16153 0y + 101381 @y < ™ (T + D100l (0 + 101551 0 + 191502 (@)
(¢ and ¢1 are constants independent of T, 0y, vo, v1, g, and @).

Lemma 2 is a corollary of estimate (6.10) from [4, p. 207].

Lemma 3. There exist a constant mg > 0 and a time Ty > 0 such that F' is a contracting mapping and
maps Mr, into itself.
Proof. Let 8 € My. Then, we have

2
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Lemmas 1 and 2 imply the estimate

1613 gy < 07 (T + DWolgoy + ol cary

T(||U0||12/vg(ﬂ) + ||U1||?/v;(n)) +T2(mj + H¢||%/VZ}(QT)))

< Cl(T)(HeOH%/vg(Q) + ||9||?/V21(QT) + ||UO||?/V23(Q) + ||U1||12/I/21(Q) + ||¢||%/V21(QT)) + Cz(T)szg-

If we choose

mg > 2C1(T) (10033 0y + I0llwz ) + 111702 ) + 191502 @) + 1911502 01y
then, for reasonably small 77 > 0, we can satisfy the estimate

101250, < 2

i.e., the mapping F' acts from My, to Mr,.
Let us show that the mapping F is contracting. Let 69 Mr,, i = 1,2. For the corresponding functions
v from Lemma 1, we obtain the estimate

o) < T2 — 9@ ||W31

2) |12
VW (@) @ry)’

Lemma 2 yields the estimate

1F(60) — F(6©) — 160 —

||W31 ||W31(QT1)

< e (T + D)o@ — 0@ 200 ) < e T (T; + 1)TE 60 —

92
Qry) HW‘”’1 (Qry)

If Ty is chosen so that ce?171(Ty + 1)T? = q < 1, the mapping F is contracting.

By the Banach theorem on contracting mappings, the set Mz, contains a single fixed point 6*, which, together
with the corresponding function v*, is the solution of Problem 1.1 in the time interval [0, T7]. The resulting solution
can be continued to the intervals [Ty, T3], ..., [Tk, Tk+1], where Tx11 — Ty > 6 > 0 and ¢ does not depend on the
number k. This follows from the estimates of Lemmas 1 and 2. Hence, the solution can be continued to any 7' > 0.

The uniqueness of the solution is proved using the rule of contradiction and estimates of Lemmas 1 and 2.

Estimate (16) follows from the fact that 6*(x,t) € Mp. Estimate (17) follows from (16) and Lemma 1.
Theorem 1 is proved.

Remark 1. All the results can be extended to the case where the boundary conditions (10) and (12) are
replaced by conditions of the form

:O’

St

(20 o (%)

where o; are functions specified on St and n is the external normal to 0f.
Remark 2. For a smoother boundary of the domain 02 and smoother data of the problem, one obtains
smoother solutions, including the classical solution.

+ o div u)

St
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